Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Molecular spectroscopy for metallurgy. Basis and application.
Tok studiów:
2017/2018
Kod:
OM-2-219-OD-s
Wydział:
Odlewnictwa
Poziom studiów:
Studia II stopnia
Specjalność:
Odlewnictwo
Kierunek:
Inżynieria Procesów Odlewniczych
Semestr:
2
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Osoba odpowiedzialna:
dr hab, prof. AGH Proniewicz Edyta (proniewi@agh.edu.pl)
Osoby prowadzące:
dr hab, prof. AGH Proniewicz Edyta (proniewi@agh.edu.pl)
Krótka charakterystyka modułu

nature of the electromagnetic radiation and ways of interaction between the electromagnetic wave and matter; molecular spectroscopy methods in structural and chemical analysis

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student has the knowledge of fundamental lows and physical constants, ways of interaction of the electromagnetic radiation with matter (absorption, emission, scattering), the transition probability, and selection rules. M2A_W06, M2A_W07, M2A_W04, M2A_W26 Prezentacja
M_W002 Student knows the forms of the molecular energy and their quantization, definitions and classification of spectra, the band shape analysis, the classification of normal modes, the nature of the electromagnetic radiation, and the Jablonski diagram. M2A_W06, M2A_W07, M2A_W04, M2A_W26 Prezentacja
M_W003 Student is able to define the ionization potential and the binding energy. M2A_W06, M2A_W07, M2A_W04, M2A_W26 Prezentacja
M_W004 Student knows basic information on molecular spectroscopy methods (vibrational (IR and Raman), UV-Vis, XRF, SIMS, Auger, NRA, RBS, PIXE, and PIGE). M2A_W06, M2A_W07, M2A_W04, M2A_W26 Prezentacja
Umiejętności
M_U001 Student is able to choose the molecular spectroscopy method suitable to solve the certain scientific problem. M2A_U06, M2A_U10, M2A_U08, M2A_U12, M2A_U07, M2A_U13, M2A_U01, M2A_U16 Zaangażowanie w pracę zespołu,
Aktywność na zajęciach
M_U002 Student is able to use the basic information on molecular spectroscopy methods. M2A_U09, M2A_U08, M2A_U07, M2A_U18, M2A_U16, M2A_U11 Udział w dyskusji,
Aktywność na zajęciach
M_U003 Student is able to analyze the results of measurements using molecular spectroscopy methods. M2A_U09, M2A_U08, M2A_U07, M2A_U18, M2A_U16, M2A_U11 Aktywność na zajęciach
M_U004 Student is able to use various sources of information to broaden its knowledge, to cooperate in a group, and engage in discussions. M2A_U09, M2A_U08, M2A_U07, M2A_U18, M2A_U16, M2A_U11 Aktywność na zajęciach
Kompetencje społeczne
M_K001 Student understands the role of molecular spectroscopy in the surrounding matter investigations and understands the need to constantly extend knowledge in the field of molecular spectroscopy. M2A_K02, M2A_K07, M2A_K05, M2A_K03 Zaangażowanie w pracę zespołu
M_K002 Student knows how to work with others to plan and carry out the measurements and data analysis. M2A_K02, M2A_K07, M2A_K05, M2A_K03 Zaangażowanie w pracę zespołu
M_K003 Student understands the basic physical phenomena occurring during the interaction of the electromagnetic radiation with matter. M2A_K02, M2A_K07, M2A_K05, M2A_K03 Zaangażowanie w pracę zespołu
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Inne
E-learning
Wiedza
M_W001 Student has the knowledge of fundamental lows and physical constants, ways of interaction of the electromagnetic radiation with matter (absorption, emission, scattering), the transition probability, and selection rules. + - - - - + - - - - -
M_W002 Student knows the forms of the molecular energy and their quantization, definitions and classification of spectra, the band shape analysis, the classification of normal modes, the nature of the electromagnetic radiation, and the Jablonski diagram. + - - - - + - - - - -
M_W003 Student is able to define the ionization potential and the binding energy. + - - - - + - - - - -
M_W004 Student knows basic information on molecular spectroscopy methods (vibrational (IR and Raman), UV-Vis, XRF, SIMS, Auger, NRA, RBS, PIXE, and PIGE). + - - - - + - - - - -
Umiejętności
M_U001 Student is able to choose the molecular spectroscopy method suitable to solve the certain scientific problem. + - - - - + - - - - -
M_U002 Student is able to use the basic information on molecular spectroscopy methods. + - - - - + - - - - -
M_U003 Student is able to analyze the results of measurements using molecular spectroscopy methods. + - - - - + - - - - -
M_U004 Student is able to use various sources of information to broaden its knowledge, to cooperate in a group, and engage in discussions. + - - - - + - - - - -
Kompetencje społeczne
M_K001 Student understands the role of molecular spectroscopy in the surrounding matter investigations and understands the need to constantly extend knowledge in the field of molecular spectroscopy. + - - - - + - - - - -
M_K002 Student knows how to work with others to plan and carry out the measurements and data analysis. + - - - - + - - - - -
M_K003 Student understands the basic physical phenomena occurring during the interaction of the electromagnetic radiation with matter. + - - - - + - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:

This course will provide an introduction and overview to the principles and methods of
molecular spectroscopy (fundamental laws, schemes and principles of scientific
equipment, and results analysis) used for testing alloys of metals, metal compounds,
metal oxides, ceramics, and glass (vibrational spectroscopy (IR and Raman ), UV-Vis,
XRF, XPS, SIMS, Auger, NRA, RBA, PIXE, PIGE, AFM, and SEM).

During the lectures students will learn fundamental physical constants; nature of
electromagnetic radiation and the electromagnetic spectrum; ways of interaction of
electromagnetic radiation with matter (absorption, emission, scattering); Jabłoński
scheme; probability of transition and selection rules; forms of molecular energy and
their quantization; spectrum definition and classification of spectra; the band shape
analysis; normal modes classification; ionization potential; binding energy; optical
microscopy).

Zajęcia seminaryjne:

During the seminars students will learn advantages and disadvantages of spectroscopic methods in surface analysis; basic spectroscopic equipment; record spectra; spectra interpretation; application of spectroscopic methods in research, development, and processes control.

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 85 godz
Punkty ECTS za moduł 3 ECTS
Udział w wykładach 30 godz
Udział w zajęciach seminaryjnych 15 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 10 godz
Samodzielne studiowanie tematyki zajęć 30 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

grading will be based upon an average score of the presentation and students’ activity

Wymagania wstępne i dodatkowe:

presence on lectures and seminar classes is obligatory

Zalecana literatura i pomoce naukowe:

J. Michael Hollas, Modern Spectroscopy, John Wiley & Sons
Z. Kęcki, Podstawy spektroskopii molekularnej, PWN
D. Briggs and M. P. Seah (Eds.), Practical surface analysis, John Wiley & Sons
Challa S. S. R. Kumar (Eds.), Surface science tools for nanomaterials characterization, Springer-Verlag
D. Briggs, M. P. Seah (Eds.), Practical surface analysis, John Wiley & Sons
R. J. H. Clark, R. E. Hester. (Eds.), Spectroscopy of surfaces, John Wiley & Sons

a detailed list will be given at the first lecture

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

A. Tąta, A. Szkudlarek, Y. Kim, E. Proniewicz, “Gold coated silicon wafer as reproducible SERS-active
substrate for identification of biologically important compounds”, Spectrochim. Acta A, 173, 251-256
(2017)
D. Święch, P.Kubisiak, M. Andrzejak, P. Borowski, E. Proniewicz, “Vibrational and ab initio molecular
dynamics studies of bradykinin”, J. Mol. Struct., 1116, 272-278 (2016)
M. Bisztyga, U. Lelek-Borkowska, E. Proniewicz, J. Banaś, “Cathodic behaviour of nickel in alcohol
solutions of electrolytes”, Electrochim. Acta, 207, 1-8 (2016)
H. Domin, E. Pięta, N. Piergies, D. Święch, Y. Kim, L. M. Proniewicz, E. Proniewicz, „Neuropeptide Y and
its C-terminal fragments acting on Y2 receptor: Raman and SERS spectroscopy studies”, J. Col. Interf.
Sci. , 437, 111-118 (2015)
E. Pięta, E. Proniewicz, B. Szmelter-Fausek, J.Olszewska-Świetlik, L. M. Proniewicz, “Pigment
characterization of important golden age panel paintings of the 17th century”, Spectrochim. Acta A,
136, 594-600 (2015)
E. Pięta, E. Proniewicz, B. Boduszek, T. K. Olszewski, M. Nattich-Rak, Y. Kim, “Probing the Ag, Au, and Cu
electrodes/pyridine-alpha-hydroxymethyl Biphenyl Phosphine Oxide Isomers interfaces with SERS”,
Appl. Surf. Sci. 335, 167-183 (2015)
A. Tąta, K. Sokołowska, J. Świder, A. Konieczna-Molenda, E. Proniewicz, E. Witek, „Study of cellulolytic
enzyme immobilization on copolymers of N-vinylformamide”, Spectrochim. Acta A 149, 494-504 (2015)
D. Święch, I. Tanabe, S. Vantasin, D. Sobolewski, Y. Ozaki, A. Prahl, S. Maćkowski, E. Proniewicz, “Tipenhanced
Raman spectroscopy of bradykinin and its B2 receptor antagonists onto colloidal suspended
Ag nanowires”, Phys. Chem. Chem. Phys. 17, 22882-22892 (2015)
J. Świder, A. Tąta, K. Sokołowska, E. Witek, E. Proniewicz, “Studies of copolymerization of Nvinylformamide
with three bifunctional monomers using spectroscopic methods”, J. Mol. Struct. 1102,
42-49 (2015)
H. Z. Li, R. Guo, Y. H. Liu, S. X. Liu, E. Proniewicz, L. M. Proniewicz, Y. Zhao, Y. Z. Xu, J. G. Wu, "Selfnucleation
Induced non-isothermal Crystallization of Nylon 6 (α form) from the Melt”, J. Appl. Polymer
Sci. 132, 42413-42422 (2015)
E. Pięta, E. Proniewicz, B. Szmelter-Fausek, J. Olszewska-Świetlik, “Micro-Raman spectroscopy analysis
of 17th century panel painting ‘Servilius Appius’ by Isaac van den Blocke”, J. Raman Spectrosc., 45,
1019-1025 (2014)
M. Molenda, A. Chojnacka, P. Natkański, E. Podstawka-Proniewicz, P. Kuśtrowski, R.Dziembaj, “Pyrolytic
Carbons Derived from Water Soluble Polymers”, J. Therm. Anal. Calorim. 113, 329-334 (2013)

Informacje dodatkowe:

Brak