Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Sensor Technology
Tok studiów:
2017/2018
Kod:
IES-1-601-s
Wydział:
Informatyki, Elektroniki i Telekomunikacji
Poziom studiów:
Studia I stopnia
Specjalność:
-
Kierunek:
Electronics and Telecommunications
Semestr:
6
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Osoba odpowiedzialna:
dr inż. Rydosz Artur (rydosz@agh.edu.pl)
Osoby prowadzące:
Brudnik Andrzej (brudnik@agh.edu.pl)
dr inż. Rydosz Artur (rydosz@agh.edu.pl)
Krótka charakterystyka modułu

This course enables to familiarize students with basic technologies and measurement procedures for sensors used essentially for detection of non-electrical quantities.

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student can understand the role of sensor, transducer and actuator. Is familiarized with static and dynamic sensor characteristics. Knows the sensor calibration procedure. ES1A_W01, ES1A_W21, ES1A_W12 Kolokwium
M_W002 Student has the basic knowledge in sensors signal conditioning, in construction of measurement chain comprising amplification components, filters, signal converters. ES1A_W14, ES1A_W16, ES1A_W01 Kolokwium
M_W003 Student knows the materials used in modern sensors and basic technologies of sensors manufacturing including MEMS, LIGA and EFAB technologies. ES1A_W15, ES1A_W05 Aktywność na zajęciach
M_W004 Student knows how are built and how work the sensors of different electrical and non-electrical parameters, made in various technologies, including MEMS sensors. ES1A_W14, ES1A_W12, ES1A_W02 Kolokwium
Umiejętności
M_U001 Student is able to measure a given sensor's characteristics using instruments available in the laboratory, and then interpret it and verify it with the expected characteristics. ES1A_U26, ES1A_U18, ES1A_U12, ES1A_U01, ES1A_U14, ES1A_U08 Wykonanie ćwiczeń laboratoryjnych
M_U002 The student is able to develop documentation of the results of the experiment, including a discussion of these results and conclusions. ES1A_U02, ES1A_U03 Sprawozdanie
M_U003 The student is able to find in the literature, databases, application notes and other sources needed information about the parameters of sensors, their characteristics and operation. ES1A_U02, ES1A_U01 Wykonanie ćwiczeń laboratoryjnych
M_U004 The student is able to choose a sensor of a certain type for a specific application, based on the characteristics of the device. ES1A_U15, ES1A_U01, ES1A_U05 Wykonanie ćwiczeń laboratoryjnych
Kompetencje społeczne
M_K001 The student understands the need for modern, miniaturized and low-energy sensors to monitor environmental parameters. ES1A_K02 Aktywność na zajęciach
M_K002 The student is aware of the impact of human activities on the natural environment and understands the need to protect it. ES1A_K02 Aktywność na zajęciach
M_K003 The student understands the need to search for innovative sensor solutions with ever-better parameters. ES1A_K04, ES1A_K02, ES1A_K01 Aktywność na zajęciach
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Inne
E-learning
Wiedza
M_W001 Student can understand the role of sensor, transducer and actuator. Is familiarized with static and dynamic sensor characteristics. Knows the sensor calibration procedure. + - + - - - - - - - -
M_W002 Student has the basic knowledge in sensors signal conditioning, in construction of measurement chain comprising amplification components, filters, signal converters. + - + - - - - - - - -
M_W003 Student knows the materials used in modern sensors and basic technologies of sensors manufacturing including MEMS, LIGA and EFAB technologies. + - + - - - - - - - -
M_W004 Student knows how are built and how work the sensors of different electrical and non-electrical parameters, made in various technologies, including MEMS sensors. + - + - - - - - - - -
Umiejętności
M_U001 Student is able to measure a given sensor's characteristics using instruments available in the laboratory, and then interpret it and verify it with the expected characteristics. - - + - - - - - - - -
M_U002 The student is able to develop documentation of the results of the experiment, including a discussion of these results and conclusions. - - + - - - - - - - -
M_U003 The student is able to find in the literature, databases, application notes and other sources needed information about the parameters of sensors, their characteristics and operation. + - + - - - - - - - -
M_U004 The student is able to choose a sensor of a certain type for a specific application, based on the characteristics of the device. + - + - - - - - - - -
Kompetencje społeczne
M_K001 The student understands the need for modern, miniaturized and low-energy sensors to monitor environmental parameters. + - + - - - - - - - -
M_K002 The student is aware of the impact of human activities on the natural environment and understands the need to protect it. + - + - - - - - - - -
M_K003 The student understands the need to search for innovative sensor solutions with ever-better parameters. + - + - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
  1. 1. Introduction

    Basic organizational information, introductory information and definitions concerning sensors, sensor applications, requirements for sensors.

  2. 2. Sensor characteristics

    Classification of sensors, static and dynamic charcteristics, Laplace transformation.

  3. 3. Sensor signals conditioning

    Conditioning of sensor signal from sensors with resistive, voltage, current, inductive, frequency, load, etc. outputs. Bridge systems. Sensor interfaces.

  4. 4. Sensor technologies

    PVD and CVD thin film technologies, MEMS technology, lithography.

  5. 5. Sensors of mechanical quantities

    Displacement, velocity, acceleration and pressure sensors, induction and capacitance sensors.

  6. 6. Flow and humidity sensors

    Characterisation of flow, different types of flow sensors, absolute and relative humidity, resistance, capacitance, gravimetric and SAW humidity sensors, dew-point sensors.

  7. 7. Strain and pressure sensors

    Piezoresistance effect, micromachined pressure sensors.

  8. 8. Gas sensors

    Market production, resistance and non-resistance type gas sensors, solutions for improvement of selectivity.

  9. 9. Temperature sensors

    RTD detectors, thermistors, thermoelectric sensors, p/n junction sensors, pyrometers.

  10. 10. Light detectors

    Photodiode, phototransistor, photoresistor, thermal-type light detectors.

  11. 11. Magnetic sensors

    Inductive, transformer-type, magnetogalvanic and magnetoelectric sensors, magnetoresistors, magnetic tunel junction sensors, SQUIDs.

Ćwiczenia laboratoryjne:
  1. 1. Investigation of accelerometers.

    The exercise examines the micromechanical acceleration sensor from the ADXL series and the piezoelectric mechanical vibration sensor. The output signals are observed on the oscilloscope, the static characteristics of the accelerometer being measured are determined.

  2. 2. Investigation of selected temperature sensors.

    In the experiment, dynamic characteristics of different types of thermocouples are studied. An output signal from the thermocouple is observed. On the basis of measured characteristics, the thermocouple transmittance is calculated using the Kondratiev method.

  3. 3. Semiconductor resistance-type semiconductor gas sensors

    The exercise determines the static and dynamic characteristics of gas sensors: dependence of sensitivity on temperature, gas concentration and gas flow. The reaction rate of the sensor for gas at various operating temperatures is also determined.

  4. 4. Investigation of photodetectors

    The exercise determines the spectral characteristics of basic photodetectors: photoresistors, photodiodes, phototransistors made of various semiconductors. The gap bandwidth of the semiconductors is determined.

Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 75 godz
Punkty ECTS za moduł 3 ECTS
Udział w ćwiczeniach laboratoryjnych 14 godz
Udział w wykładach 24 godz
Przygotowanie sprawozdania, pracy pisemnej, prezentacji, itp. 8 godz
Przygotowanie do zajęć 14 godz
Dodatkowe godziny kontaktowe z nauczycielem 15 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

1. The condition for passing the subject is obtaining a positive grade from the laboratory.
2. The final mark from the laboratory is a weighted average of grades from individual exercises – preliminary tests (60%) and reports (40%).
3. The overall final mark is calculated based on an algorithm:
if average & gt; 4.75 then OK: = 5.0 else
if average & gt; 4.25 then OK: = 4.5 else
if average & gt; 3.75 then OK: = 4.0 else
if average & gt; 3.25 then OK: = 3.5 else OK: = 3
4. If a positive grade from the laboratory was obtained on the first date and additionally the student was active at the lectures, the final grade is raised by 0.5.

Wymagania wstępne i dodatkowe:

• Knowledge of solid state physics (after physics course)
• Knowledge of basic electronic components
• Knowledge of analog electronic circuits
• Knowledge of digital electronic circuits

Zalecana literatura i pomoce naukowe:

1. S.M. Sze, Semiconductor Sensors, John Wiley & Sons, Inc., 1994
2. J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors, MEMS and Smart Devices, John Wiley & Sons, LTD, 2001
3. W. Göpel, J. Hesse, J.N. Zemel, Sensors – A Comprehensive Survey, VCH Verlagsgesellschaft mbH, 1989
4. T. Pisarkiewicz, Mikrosensory gazów, Wydawnictwa AGH, Kraków 2007
5. Wybrane sensory gazów. Przewodnik multimedialny: http://oen.dydaktyka.agh.edu.pl/dydaktyka/automatyka/c_sensory_gazu/
6. Sensor Laboratory web page: http://home.agh.edu.pl/~maziarz/LabTechSens
7. R. Frank, “Understanding smart sensors”, Artech House, 1996
8. J.W. Gardner, V.K.Varadan, “Microsensors, MEMS, and Smart Devices”, John Wiley & Sons, 2001
9. S. Tumański, „Technika pomiarowa”, WNT 2007
10. Michalski L., Eckersdorf K.: Pomiary temperatury WNT
11. Rzasa M., Kiczma B.: Elektryczne i elektroniczne czujniki temperatury
12. L. Michalski, K. Eckersdorf, J. Kucharski: Termometria, przyrządy i metody, Wydawnictwo Politechniki Łódzkiej, 1998.
13. P. Horowitz, W. Hill: Sztuka Elektroniki, WKŁ, Warszawa cz. 1 i 2. wydanie: 9/2009.
14.P. Ripka „Magnetic sensors and magnetometers”, Artech House, 2001.
15.S. Tumański, „Thin film magnetoresistive sensors” IOP Publishing Ltd. 2001.
16.S. Tumański, „Cienkowarstwowe czujniki magnetorezystancyjne”, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1997

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

The papers in the base:
https://bpp.agh.edu.pl/autor/rydosz-artur-06527
https://bpp.agh.edu.pl/autor/brudnik-andrzej-01174

Informacje dodatkowe:

Some lectures are conducted using the didactic method of the “reversed university”, i.e. the students are given the task to do before the lecture, for example, watching a film discussing the principle of operation of the sensor or familiarizing with specific information.