Moduł oferowany także w ramach programów studiów:
Informacje ogólne:
Nazwa:
Analogue Electronic Circuits 1
Tok studiów:
2017/2018
Kod:
IES-1-306-s
Wydział:
Informatyki, Elektroniki i Telekomunikacji
Poziom studiów:
Studia I stopnia
Specjalność:
-
Kierunek:
Electronics and Telecommunications
Semestr:
3
Profil kształcenia:
Ogólnoakademicki (A)
Język wykładowy:
Angielski
Forma i tryb studiów:
Stacjonarne
Osoba odpowiedzialna:
dr hab. inż. Machowski Witold (witold.machowski@agh.edu.pl)
Osoby prowadzące:
dr inż. Kołodziej Jacek (jackolo@agh.edu.pl)
dr hab. inż. Machowski Witold (witold.machowski@agh.edu.pl)
Dziurdzia Piotr (dziurdzi@agh.edu.pl)
Krótka charakterystyka modułu

Introductory coures for sophomore students coveting most important fundamentals of analog circuit analysis and desgn (BJT and MOSFET amplifiers, OpAmps, feedback topologies)

Opis efektów kształcenia dla modułu zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Powiązania z EKK Sposób weryfikacji efektów kształcenia (forma zaliczeń)
Wiedza
M_W001 Student knows basic bipolar and CMOS circuit implementations of most important functional blocks ES1A_W21, ES1A_W16 Egzamin
M_W002 Student knows principles of analysis and design of analog electronic circuits ES1A_W15, ES1A_W12 Egzamin
Umiejętności
M_U001 Student can design analog electronic circuit using appropriate methods, techniques and tools. ES1A_U16 Kolokwium
M_U002 Student can utilize circuit implementations of analog blocks with taking into account performance and non-technical (eg. costs) issues. ES1A_U09 Kolokwium
M_U003 Student is able to formulate design specification for simple electronic systems and subsequently verify it. ES1A_U15 Kolokwium
Kompetencje społeczne
M_K001 Student understands the necessity and knows possibilities of lifelong learning and improving the professional competencies and qualifications ES1A_K01 Kolokwium
M_K002 Student is aware of the importance of non-technical aspects and consequences of his/her activity as an electronic engineer including responsibility for possible impact on environment ES1A_K02 Kolokwium
Matryca efektów kształcenia w odniesieniu do form zajęć
Kod EKM Student, który zaliczył moduł zajęć wie/umie/potrafi Forma zajęć
Wykład
Ćwicz. aud
Ćwicz. lab
Ćw. proj.
Konw.
Zaj. sem.
Zaj. prakt
Zaj. terenowe
Zaj. warsztatowe
Inne
E-learning
Wiedza
M_W001 Student knows basic bipolar and CMOS circuit implementations of most important functional blocks + + - + - - - - - - -
M_W002 Student knows principles of analysis and design of analog electronic circuits + + - - - - - - - - -
Umiejętności
M_U001 Student can design analog electronic circuit using appropriate methods, techniques and tools. + + + + - - - - - - -
M_U002 Student can utilize circuit implementations of analog blocks with taking into account performance and non-technical (eg. costs) issues. + + + + - - - - - - -
M_U003 Student is able to formulate design specification for simple electronic systems and subsequently verify it. + + + - - - - - - - -
Kompetencje społeczne
M_K001 Student understands the necessity and knows possibilities of lifelong learning and improving the professional competencies and qualifications + + + - - - - - - - -
M_K002 Student is aware of the importance of non-technical aspects and consequences of his/her activity as an electronic engineer including responsibility for possible impact on environment + + + - - - - - - - -
Treść modułu zajęć (program wykładów i pozostałych zajęć)
Wykład:
Module comprises lectures (28 hr) discussion class (28 hr) and laboratory exercises (28 hr) Lectures

1. Electronics and microelectronics. Filters, amplifiers and other two-ports. Basic classes of amplifiers. Input and output impedance. OpAmp as a Black Box. Analysis of linear applications with OpAmps – inverting and non-inverting configuration.

2. Frequency response of simple RC circuits. Behavioral description of open loop OpAmp’s gain. Gain-bandwidth exchange in OpAmp circuits. Other OpAmp non-idealities and their impact on application performance. OpAmp based differentiator and integrator. Instrumental amplifiers.

3. Large and small-signal models of BJT. Relationship between collector current and small signal parameters. Impedance seen from base, collector and emmiter. Roboust BJT biasing in discrete and integrated technology. BJT amplifiers configurations – OE OB and emmiter follower. Benchmark parameters for different configurations.

4. Frequency response of transistor circuits. Miller effect.Intristic gain and fT.

5. MOSFET models for hand calculations. Body effect. Short channel MOSFETS. MOSFET biasing and amplifier configurations – CS, CG and CD.

6. Active biasing and load in bipolar and CMOS integrated circuits. Current sources/sinks and mirrors. Cascode configuration and its advantages. Folded cascode.

7. Feedback topologies. Sensing and return schemas. Feedback’s impact on amplifier parameters. Practical feedback circuit examples. Stability issues degenerative and regenerative feedback.

8. DC amplifiers. Long tail bipolar and MOSFET pair. Common mode and differential signals. Transfer curves for diffpair.
Small signal analysis of differential ammlifiers. CMRR and PSRR. Internal structure of OpAmp. Frequency compensation. Slew rate. Rail-to-rail amplifiers.

9. Active filters. Types of filters. Approximation, implementation and filter synthesis. Integrators, biquads.
Discrete time analog circuits – SC and SI filters.

10. Noise in electronic circuits. Noise origin in electronic devices. Noise parameters. Noise optimization and reduction. Interference noise and shielding.

11. Output stages and power amplifiers. Thermal issues in electronics. Safe operation area. Overheat protection. Thermal resistance.

12. Rectifiers and voltage regulators. Parametric stabilizers. Voltage regulators topology. Short protection and foldback. Pulse regulators and DC voltage converters.

Ćwiczenia laboratoryjne:
Laboratory class

The main philosophy of this lab is “learning by doing”.
Students work in teams and assembly practical circuits using solderless protoboards and THT elements/devices.
Subsequent themes are described more detailedly in lab manuals posted on the course webpage.

1. Introductory exercises. Safety rules in the laboratory. Getting familiar with laboratory equippment. Simple experiments with RC cicruics stimulated with sine and pulse waveforms.

2. OpAmp based circuits (inverting, noninverting, adder etc.)

3. OpAmp applications – students realize own project approved by the laboratory instructor.

4. BJT – biasing circuits

5. Single BJT amplifiers

6. Single CMOS amplifiers

7. BJT/CMOS differential pair

8. Voltage regulators

9. Final practical test – each student is expected to practically perform part of the lab exercise previously made with his/her team

Ćwiczenia audytoryjne:
Discussion class:

1. Analysis and design of linear OpAmp applications.

2. Frequency response of OpAmp circuits. Stability of feedback circuits. Phase/gain margin concepts.

3. Bias calulations based on large signal models. Bias current sensitivity. Role of approximate calculations. Small-signal operation concept and models.

4. Analysis of small-signal parameters for different types of amplifier configurations.

5. Design procedures for amplifiers with desired gain and input/output impedance. Trade-offs in electronic circuit design. Impact of elements’ tolerances on performance.

6. Feedback circuit analysis. Basic topologiers. Intuitive sensing and return mechanism recognition.

7. Analysis of differential pairs. Active loads. Designing current mirrors.

8. Analysis and design of voltage regulators

Ćwiczenia projektowe:
-
Nakład pracy studenta (bilans punktów ECTS)
Forma aktywności studenta Obciążenie studenta
Sumaryczne obciążenie pracą studenta 149 godz
Punkty ECTS za moduł 5 ECTS
Udział w wykładach 28 godz
Samodzielne studiowanie tematyki zajęć 28 godz
Udział w ćwiczeniach laboratoryjnych 28 godz
Przygotowanie do zajęć 28 godz
Udział w ćwiczeniach audytoryjnych 28 godz
Udział w ćwiczeniach projektowych 9 godz
Pozostałe informacje
Sposób obliczania oceny końcowej:

Final grade will be issued after successful assesment of both discussion and laboratory class as well as passing the final exam. The final grade is weighted sum of auditory class assesment (20%), lab class assesment (20%), final exam (50%) and lecture quizzes (10%)

Wymagania wstępne i dodatkowe:

Background in mathematics (calculus, matrix algebra, complex numbers), circuit theory, semiconductor devices. Basic laboratory skills – multimeter, oscilloscope, signal generator use.

Zalecana literatura i pomoce naukowe:

B. Razavi Fundamentals of Microelectronics, Willey, 2008
A. Sedra, K.C. Smith, Microelectronic Circuits, Oxford UP 2010
R. Jaeger, T. Blalock, Microelectronic Circuit Design,McGraw Hill 2003
A. Agarwal, J.H Lang, Foundations of Analog and Digital Electronic Circuits, Elsevier 2005

Publikacje naukowe osób prowadzących zajęcia związane z tematyką modułu:

Niskonapięciowe układy analogowe bazujące na inwerterach CMOS w scalonych systemach VLSI — Low voltage analog circuits based on CMOS inverters in VLSI systems / Witold MACHOWSKI. — Kraków : Wydawnictwa AGH, 2012. — 197 s., 1. — (Rozprawy Monografie / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie ; ISSN 0867-6631 ; 259). — Bibliogr

Hybrid DPWM implementation using coarse and fine programmable ADLL / Jacek JASIELSKI, Stanisław KUTA, Witold MACHOWSKI, Wojciech Kołodziejski // Microelectronics Journal ; ISSN 0026-2692. — 2014 vol. 45 iss. 9. s. 189–198, Streszcz., Summ.. — ISBN: 978-83-7464-533-1

Buforowanie danych w systemie transmisyjnym z koderem a/c i c/a o nierównomiernym próbkowaniu — Buffering data in the transmission system with a/d and d/a non-uniform sampling converters / Jacek KOŁODZIEJ, Jacek STĘPIEŃ, Witold MACHOWSKI, Ryszard GOLAŃSKI, Juliusz GODEK // Przegląd Elektrotechniczny / Stowarzyszenie Elektryków Polskich ; ISSN 0033-2097. — 2017 R. 93 nr 12, s. 221–226

Informacje dodatkowe:

Brak