Module also offered within study programmes:
General information:
Name:
Economic geology II (industrial materials)
Course of study:
2017/2018
Code:
BGG-2-201-EG-s
Faculty of:
Geology, Geophysics and Environmental Protection
Study level:
Second-cycle studies
Specialty:
Economic Geology
Field of study:
Mining and Geology
Semester:
2
Profile of education:
Academic (A)
Lecture language:
English
Form and type of study:
Full-time studies
Course homepage:
 
Responsible teacher:
dr inż. Magiera Janusz (magiera@geol.agh.edu.pl)
Academic teachers:
dr inż. Botor Dariusz (botor@agh.edu.pl)
dr hab. inż. Bukowski Krzysztof (buk@geolog.geol.agh.edu.pl)
dr inż. Magiera Janusz (magiera@geol.agh.edu.pl)
Module summary

Economic geology II (industrial materials)

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence
M_K002 Student is able to work in a team and plan, share and compile stages of the project and contribution of the team members. GG2A_K01, GG2A_K02 Test,
Execution of a project
Skills
M_U003 Student is able to identify, examin and describe basic types of rocks used as raw materials. GG2A_U03 Test,
Project
M_U004 Student is able to select proper procedures and tools for succesful selection of raw material good for practical application. GG2A_U10, GG2A_U14 Execution of a project
Knowledge
M_W002 Student gets acquainted with: 1. main petrographic types of rocks that can be applied as raw materials (building stones, aggregates, clay minerals, salts and other chemical minerals); 2. mineralogy, petrography and mechanical properties of the rocks applied as raw materials. GG2A_W01, GG2A_W05 Test
M_W003 Student knows relationships between origin of the rock and its mineral, petrographic, structural and textural features and, firther on, its mechanical properties and, thus, application as raw material. GG2A_W05, GG2A_W04 Test
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Others
E-learning
Social competence
M_K002 Student is able to work in a team and plan, share and compile stages of the project and contribution of the team members. + - - - - - + - - - -
Skills
M_U003 Student is able to identify, examin and describe basic types of rocks used as raw materials. + - - - - - + - - - -
M_U004 Student is able to select proper procedures and tools for succesful selection of raw material good for practical application. - - - - - - + - - - -
Knowledge
M_W002 Student gets acquainted with: 1. main petrographic types of rocks that can be applied as raw materials (building stones, aggregates, clay minerals, salts and other chemical minerals); 2. mineralogy, petrography and mechanical properties of the rocks applied as raw materials. + - - - - - + - - - -
M_W003 Student knows relationships between origin of the rock and its mineral, petrographic, structural and textural features and, firther on, its mechanical properties and, thus, application as raw material. - - - - - - - - - - -
Module content
Lectures:

During the lecture, most important examples of mineral deposits, of different origin will be presented and discussed. Geology of world class mineral deposits e.g. Bushveld complex, Great dyke, Sudbury, Norylsk, Merensky Reef, Ocorusu, Silliniarvi, Chuquicamta, Myszków, Copper Belt, Lubin – Kupferschiefer type; Cigar Lake, MontGee (U deposit).
Metallogenic provinces and epochs in relation to plate tectonic.
How to construct 2D-3D-4D model of mineral deposits.
Selected deposits of building and industrial materials.

Practical classes:

Individual project: description of one selected mineral deposit. Evaluation of economic importance of collected samples. Factors controlling ore mineralization based on world class deposits. Multimedia presentation of project.

Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 135 h
Module ECTS credits 5 ECTS
Participation in lectures 30 h
Participation in practical classes 45 h
Realization of independently performed tasks 20 h
Completion of a project 20 h
Preparation of a report, presentation, written work, etc. 20 h
Additional information
Method of calculating the final grade:

The final grade: = 0,6* exam + 0,4 * project

Prerequisites and additional requirements:

Mineralogy and petrography advance knowledge
Economic Geology I course passed

Recommended literature and teaching resources:

1. Building stones and aggregates:
Prikryl, R. (ed.), 2004 – Dimension Stone. Balkema
Smith, M. R. & Collis, L. (eds.), 1993 – Aggregates. The Geological Society of London.
Winkler, E. M., 1997 – Stone in architecture. Properties, durability. Springer.
Siegismund, S., Weiss, T. & Vollbrecht A. (eds.), 2002 – Natural stone: weathering phenomena,
conservation strategies and cas studies. The Geological Society of London.
Latham, J.-P., 1998 – Advances in aggregates and armourstone evaluation. The Geological Society of
London.
Smith, M. R. (ed.),1999 – Building stone, rock fill and armourstone in construction. The Geological
Society of London.
Misra C. K. (1999) – Understanding Mineral Deposits.
2. Evaporites:
Warren J., 2006 – Evaporites. Their Evolution and Economics. Springer.
Babel M., Schreiber Ch., 2013 – Geochemistry of Evaporites and Evolution of Seawater; In: Mackenzie F.
(ed). Treatise on Geochemistry, v. 9. Sediments, Diagenesis, and Sedimentary Rocks, Elsevier.
Garlicki A., 2013 – Salt Mines in the World; [in] Andrzej Nowakowski, in: The “Wieliczka Salt Mine. An
Underground Treasure. Universitas Kraków,
Poborska-Młynarska K., Toboła T., 2013 – Glossary of mining and geological terms. [in] Andrzej
Nowakowski, in: The “Wieliczka Salt Mine. An Underground Treasure. Universitas Kraków.
3. Coal:
Larry Thomas 2002. Coal Geology. Wiley-Blackwell. Książka dostępna w Bibliotece Gł. ale także w Internecie.

Scientific publications of module course instructors related to the topic of the module:

Bukowski K., Czapowski G., Karoli S., Bąbel M. 2007. Sedimentology and geochemistry of the Middle Miocene (Badenian) salt-bearing succession from East Slovakian Basin (Zbudza Formation) From: Schreiber, B. C., Lugli, S. & Babel, M. (eds) Evaporites Through Space and Time. Geological Society, London, Special Publications, 285, 247–264.

Bukowski K., Czapowski G. 2009. Salt geology and mining traditions: Kalush and Stebnik mines (Fore-Carpathian region, Ukraine). Geoturystyka 3 (18): 3-28

Czapowski G., Bukowski K. 2010. Geology and resources of salt deposits in Poland: the state of the art. Geological Quarterly vol. 54 s. 509–518.

De Leeuw A., Bukowski, K., Krijgsman, W. and Kuiper, K.F. 2010. Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum Mediterranean region, Geology,v.38, no. 8; 715-718

Bielowicz B., Misiak J., Wagner M., Botor D. 2017. Critical elements in ash fly from coal used in Polish energy plants. E3S Journal.

Botor, D., Anczkiewicz, A.A., 2015. Thermal history of the Sabero Coalfield (Southern Cantabrian Zone, NW Spain) as revealed by apatite fission-track analyses from tonstein horizons: implications for timing of coalification. International Journal of Earth Sciences 104, 1779–1793.

Botor, D., 2014. Timing of coalification of the Upper Carboniferous sediments in the Upper Silesia Coal Basin (SW Poland) on the basis of by apatite fission track and helium dating. Gospodarka Surowcami Mineralnymi 30 (1), 85–104.

Botor D., 2012. Hydrothermal fluids influence on the thermal evolution of the Stephanian sequence, the Sabero Coalfield (NW Spain). Geology, Geophysics & Environment / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie; vol. 38 no. 4, s. 369–394.

Botor D., 2011. Trace element geochemistry in coals from the Southern Cantabrian Zone (NW Spain): preliminary results. Mineralogia 42, No 1: 39-51.

Botor D. 2009. Ewolucja stopnia uwęglenia utworów górnokarbońskich w obszarze górniczym Janina w Libiążu we wschodniej części Górnośląskiego Zagłębia Węglowego (GZW). Kwartalnik Geologia – AGH vol. p. 20-30.

Botor D., 2005. Geochemistry of Upper Carboniferous tonsteins from the Sabero Coal-field (NW, Spain). Zeszyty Naukowe Politechniki Śląskiej w Gliwiach. Seria – Górnictwo, vol.. 268, p. 19-30.

Jan BROMOWICZ, Beata FIGARSKA-WARCHOŁ, Andrzej KARWACKI, Anna KOLASA, Janusz MAGIERA, Marek REMBIŚ, Anna SMOLEŃSKA, Grażyna STAŃCZAK, 2004 – Decorativeness – an important criterion of the evaluation of the deposits of building and road stones. Górnictwo Odkrywkowe, 46 nr 3–4, s. 45–49.

BROMOWICZ Jan, FIGARSKA-WARCHOŁ Beata, KARWACKI Andrzej, KOLASA Anna, MAGIERA Janusz, PESZAT Czesław, REMBIŚ Marek, SMOLEŃSKA Anna, STAŃCZAK Grażyna, 2004 – Evaluation of building and road stone deposits. International geological congress : Florence–Italy, August 20–28, 2004.

Jan BROMOWICZ, Janusz MAGIERA, 2006 – Natural crushed aggregates and European Ecological Network Natura 2000. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, nr 115, s. 3–18.

Jan BROMOWICZ, Beata FIGARSKA-WARCHOŁ, Andrzej KARWACKI, Anna KOLASA, Janusz MAGIERA, Marek REMBIŚ, Anna SMOLEŃSKA, Grażyna STAŃCZAK 2005 – Evaluation of the Polish deposits of building and road stones in the light of European Union regulations. Wyd. Nauk. AGH.

Jan BROMOWICZ, Beata FIGARSKA-WARCHOŁ, Andrzej KARWACKI, Anna KOLASA, Janusz MAGIERA, Marek REMBIŚ, Anna SMOLEŃSKA, Grażyna STAŃCZAK , 2005 – Physical and mechanical properties of mineral product in Polish deposits used as building stone. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej nr 109, s. 13–24.

Additional information:

None